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dTMS H4 coil for the addiction treatment: assessment of the electric field in cortical and subcortical targets  

 

Take-Home Messages.  

 Deep Transcranial Magnetic Stimulation (dTMS), administered through H4 coil, has been recently proposed 

for the addiction treatment and it’s aimed to stimulate bilaterally the prefrontal cortex and to activate the 

reward pathway. 

 Computational electromagnetic models help in gaining knowledge on the mechanism laying behind 

neurostimulation, by providing a detailed electric field distribution induced in cerebral tissues. 

 Simulations demonstrates that H4 induces the highest electric fields at cortical level, targeting preferentially 

prefrontal cortex and the anterior cingulate cortex and then supporting its use for addiction treatment. 

 This work represents, in contrast with prior works based on homogenous tissue phantoms, a powerful and 

informative tool for both planning, optimization and outcomes evaluation of clinical protocols based on dTMS 

systems for addiction treatment. 

 Deep TMS coil H4 can be specifically used to target cortical and subcortical structures involved in food 

craving related disorders.  
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Abstract Deep Transcranial Magnetic Stimulation (dTMS) is a neurostimulation technique for deep brain structures that has 

recently been successfully applied in the clinic for treatment of addiction. In contrast to conventional magnetic stimulation, 

which uses planar coils (figure-of-8) to target specific superficial regions of the brain, dTMS requires the design of complex 

three-dimensional coils in order to induce deeply penetrating fields. Recent clinical studies have focused on the use of H4 coils, 

which utilizes a left-right symmetric structure for bilateral stimulation of the prefrontal cortex, and demonstrated efficacy for 

therapy such as smoking cessation. The mechanism of activity, however, remains poorly understood, in part because the affected 

regions of the brain are not known in detail. To this purpose, computational techniques applied to highly detailed inhomogeneous 

tissue phantoms, provide a powerful tool for testing coil efficacy. In this work we quantified both electric field E distribution and 

its penetration depth in the prefrontal cortex, induced by a specific Hesed-coil, H4, designed for the addiction treatment and by 

the traditional figure-of-8 coil for comparison. Results show that H4 coil preferentially targets insula and cingulate cortex. 

Moreover, it can induce in the deepest tissues E amplitude ranging between the 20-40% of the cortical peak and it can penetrate 

the cortex up to 4 cm with a E>50% of the cortical peak, thus noticeably increasing the penetration depth of the traditional TMS 

systems. 

 
Keywords — Dosimetry, Magnetic stimulation, Computational electromagnetics, Finite element methods, noninvasive treatment, 

electromagnetic induction. 

 

I. INTRODUCTION1 

HE recent advances in neuroimaging have allowed a 

more precise identification of anatomical and 

functional alterations in specific brain regions thus 

contributing to a better understanding of their role in the 

time of onset and the progression of different neurological 

disorders [1]. That paved the way to a more rational and 

focused development of techniques such as Deep Brain 

Stimulation (DBS), Transcranial Magnetic Stimulation 

(TMS) and transcranial Direct Current Stimulation (tDCS) 

for brain modulation. Among them, TMS, by combining a 

non-invasive and safe approach for prefrontal cortex (PFC) 

stimulation, has been increasingly considered a valuable 

and efficient tool for the treatment of neuropsychiatric 

disorders, whose progression is clinically linked to 

imbalanced activity of that region [2]. However, 
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conventional TMS, usually administered through a “Figure-

of-Eight” (FoE) coil system, allows stimulation of the only 

brain regions placed just below the skull, and, therefore, it 

is not the most adequate tool for reaching specific deeper 

subcortical networks that are known for their affected 

activity in all the mood disorders. In the attempt to 

overcome this constraint, deep TMS (dTMS) was proposed 

[3][4]. This technique, based on the use of large coils with a 

complex 3D path, by inducing a non-focal distribution over 

the cortex, allows to reach deeper brain targets than 

traditional and focused FoE based TMS systems. In the last 

few years, in particular, dTMS started to be successfully 

used in the treatment of a growing number of mood 

disorders, including substance use disorder (for a review on 

the clinical use of dTMS coils see [5]). Literature and 

criteria defining substance use disorder considers food 

addiction similar to drug addiction, sharing most of 

evidence on underlying common neurobiological 

mechanisms [6]. For this reason, studies that have 

successfully applied dTMS for the treatment of drug 

disorders [7][8] sound as a promising basis to extend the 

use of that therapy for the treatment of food related 

pathologies. Neuroanatomy of food craving is little 

explored, however, the growing literature on the neural 

substrate of drug craving suggests that the craving-related 

activated structures include prefrontal cortex (PFC), 

anterior cingulate cortex (ACC), insula, hypothalamus, 

amygdala, hippocampus, nucleus accumbens and ventral 

tegmental area (VTA) [9][10]. These structures, as 
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documented by the few computational studies that have 

investigated the detailed distributions of electric field 

induced by dTMS coils [11]-[16] can be reached with an 

electric field amplitude higher than the 20% of the 

maximum at cortical level at expense of a much more broad 

distribution over the cortex. Among dTMS coils, the family 

of coils called Hesed (H) coils are thought to target both 

prefrontal cortex areas and the over mentioned sub-cortical 

structures, thus encouraging their application for the 

addiction treatment, including food addiction.  

In particular, the dTMS H-coil named “H4”, among the 

other H-coils [5], was precisely designed to bilaterally 

stimulate a specific cortical target for the addiction, namely 

the prefrontal cortex, between the entorhinal cortex and the 

insula, and was successfully used in a pilot study for 

smoking cessation [8].  Despite that, the mechanism lying 

behind the proven efficacy of this coil is still poorly 

understood, in part because of the limited knowledge of the 

regions most affected by the stimulation. This translates 

into a limited and unspecific knowledge of the electric field 

(E) distribution induced into the complex brain anatomy. 

In contrast with most of the previous decades works, 

based on homogenous tissue phantoms, this work aims to 

quantify, by means of computational electromagnetic 

techniques, the E distribution induced by H4, in a new and 

highly detailed anatomical head model.  

The E distributions were also compared with the one 

induced in the same targets by a conventional FoE coils 

system, traditionally used for the TMS therapy. Moreover, 

in order to evaluate to which extent the individual 

variability affects the E distributions, the analysis of the E 

induced by H4 was also performed on other two highly 

detailed anatomical models, commonly used in the most 

advanced computational electromagnetic studies. 

II. METHODS 

A. Human and coil models 

A multimodal imaging-based anatomical model, named 

MIDA (Fig. 1) [17], of the head and neck, segmented and 

reconstructed from three different MRI modalities at a 500 

μm isotropic resolution was used in this study. The model 

derives from scans of one healthy 29-years old female 

volunteer. The head model distinguishes, among other 

tissues, the cortex (in which we identified prefrontal cortex, 

anterior cingulate cortex and insula), hypothalamus, 

amygdala, hippocampus, nucleus accumbens and ventral 

tegmental area. The dielectric properties of each of them 

have been assigned according to literature data [18][19] at 

the dTMS single pulse typical frequency [20], i.e. 5 kHz. 

The H4 coil was modelled according to the available 

manufacturer specifications as current paths. It is composed 

of 12 windings and the current flows clockwise in each 

winding. The FoE coil model was also derived by a 

clinically used coil and consists of two adjacent current 

circular loops, modelled as two single current paths [16], of 

10 cm diameter, placed tangentially to the head. A distance 

of 1 cm to account for the thickness of the realistic coil 

insulation not included in the model was kept. The current 

flows in opposite directions in the two windings. Following 

the experimental studies protocol, both coils were placed 

with their centers moved from the left motor hand cortex, 

where the motor threshold (MT, here supposed to be equals 

to 100 V/m) was determined, 6 cm toward the left 

prefrontal cortex (Fig. 2).  

The current intensity delivered was then adjusted in order 

to obtain 120% of the MT (i.e. 120 V/m). 

Fig. 1. MIDA model. Top: surface and internal organs representation; 

Bottom: Segmentation masks of brain target structures for addiction 
treatment. PFC: prefrontal cortex; ACC: anterior cingulate cortex; VTA: 

ventral tegmental area. 

 
Fig. 2.  H4 (left) and FoE (right) coil models placed over MIDA model. 



2469-7249 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JERM.2018.2874528, IEEE Journal
of Electromagnetics, RF and Microwaves in Medicine and Biology

According to repetitive TMS (rTMS) safety guidelines (see 

the first guidelines [21] and the related consensus 

statements and comments [22][23][24]), this threshold, if 

used in combination with adequate frequency and duration 

of trains, has been proven efficacious in avoiding both 

spread of excitation and seizures, thus assuring that both the 

field produced by the simulated coils and the resulting 

induced fields are within the limits preventing acute adverse 

effects in humans. 

B. Simulations 

Simulations were conducted using the magneto quasi-

static low-frequency solver of the simulation platform 

SIM4life (by ZMT Zurich Med Tech AG, Zurich, 

Switzerland, www.zurichmedtech.com), which uses a Biot- 

Savart solver based on the scalar potential finite element 

method. In the low frequency range, the pertinent 

dimensions of the computational domain are smaller than 

the free space wavelength; therefore, the magnetic vector 

potential A is decoupled from E. Moreover, since the 

conduction currents are dominant in the human body for the 

conditions here studied, E can be calculated from the scalar 

potential Φ, which is given by (1):   

−∇∙σ∇Φ=jω∇∙(σA)        (1) 
 

where σ is the tissue conductivity and ω is the angular 

frequency of the frequency of the field. A is calculated 

using the Biot-Savart’s law whereas the finite element 

method is used to solve for Φ. The computational domain 

was discretized using a uniform hexahedral meshing 

algorithm, made available by the computational software, 

with a maximum mesh step of 0.5 mm. 

 

C. Electric field analysis 

The E amplitude distribution was estimated in the brain 

regions target of the dTMS for addiction treatment (detailed 

in Fig. 1). In all these brain structures, the descriptive 

statistics of the E amplitude distribution (i.e. min, 25th, 50th, 

75th and 99th percentiles of the distribution) and its 

penetration depth were quantified. This last is defined as the 

maximum depth in the frontal lobe of the brain where the 

induced E amplitude was equal or greater than the 50% 

(d50) or the 70% (d70) of the maximum (here intended as the 

99th percentile) amplitude of E in the cortex (in the 

following named “Emax”) [13]-[15]. 

 

 
Fig. 4.  Descriptive statistic of the normalized E amplitude induced by H4 

(top) and FoE (bottom) coils over cortical and subcortical MIDA structures 
PFC: prefrontal cortex; ACC: anterior cingulate cortex; VTA: ventral 

tegmental area; L: left; R: right. 

 
Fig. 3. Normalized (to Emax) E amplitude distributions induced by H4 (left) 

and FoE (right) coil over MIDA cortical surface. 3D surface (top row) and 

slice field view (bottom row). 
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D. Effect of human variability on electric field 

distribution 

In order to evaluate to which extent the human variability 

affects the E amplitude distribution induced by the H4 coil, 

the same analysis performed on MIDA model was repeated 

on two adult anatomical voxel models belonging to the 

Virtual Family [25], namely an adult 34-years old male 

model “Duke” and an adult 26-years old female model 

“Ella”. In particular, the E amplitude distribution was 

estimated in some brain regions target of the dTMS for 

addiction treatment that can be distinguished in all the three 

models and the penetration depth in the PFC for each of 

them was calculated.  

III. RESULTS 

Fig. 3 shows the normalized (to Emax) E amplitude 

distribution induced by the two coil systems over MIDA 

cortex. Panels in the figure show that E amplitude 

distributions induced by H4 coil are much more widespread 

than the ones due to the FoE coil and involve both 

hemispheres. H4 coil is able to induce higher E amplitude 

over a broad area of the frontal lobe, specifically over the 

more lateral region (anterior cingulate cortex and entorhinal 

cortex) of both hemispheres. Conversely, FoE induces a 

more focused E amplitude distribution with maxima over a 

small volume of the superior PFC only on the hemisphere 

over which it is positioned. 

In order to quantify more precisely the E amplitude 

distributions in cortical and subcortical structures target of 

stimulation, Fig. 4 illustrates the descriptive statistics 

(minimum, 25th, 50th, 75th and 99th
 percentile) of the E 

amplitude distributions normalized respect to Emax in the 

cortex. From this figure, one can note how H4 coil 

preferentially targets the bilateral prefrontal cortex and the 

bilateral anterior cingulate cortex, followed by insula (peak 

of E amplitude around the 50-60% of Emax), amygdala and 

nucleus accumbens (peak of E amplitude around 30% of 

Emax), hippocampus (peak of E amplitude> 25% of Emax), 

and ventral tegmental area and hypothalamus (peak E 

around 10% Emax). The same trend can be identified by 

comparing the median normalized E amplitude values, with 

a cortical maximum median value over the anterior 

cingulate cortex (median of E amplitude around 40% of 

Emax) and a decrease of more than 20% in the subcortical 

structures. FoE targets, as expected, preferentially the left 

hemisphere over which it is positioned, with a maximum 

over the left PFC. In detail, it can reach the left anterior 

cingulate cortex with a peak of E amplitude around 50% of 

the cortical peak, whereas in all the other target regions the 

induced E amplitude is always below the 20% of the 

maximum.  

Fig. 5 shows the comparison between mean and standard 

deviation of the normalized (for each model to the 

respective cortical Emax) E amplitude distribution induced in 

the target tissues that are identifiable in all the three models. 

The figure shows that the E amplitude distributions were 

slightly influenced by the anatomical differences, with a 

general trend of the spatial distributions of the field 

amplitude similar among the different human models.  

Fig. 6 shows the maximum depth of the point in the 

frontal lobe whose E amplitude is equal or greater at 50% 

(d50) or at 70% (d70) of Emax for both coils on MIDA and for 

all the three human models for H4 coil. The calculation of 

the penetration depth in the MIDA model revealed that H4 

coil can penetrate the prefrontal cortex up to 4.2 cm with an 

 
Fig. 5. Mean (bars) and standard deviation (whiskers) of the normalized (to 

cortical Emax) electric field distributio induced by H4 on the three different 
models 

  

 
Fig. 6. Penetration depth at 50% (d50) and at 70% (d70) of Emax in the 

frontal lobe from the surface of the cortex for the two coil systems over 
MIDA and for H4 also on Duke and Ella models.   
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E>70% of Emax and up to 4.8 cm with an E>50% of Emax. 

Moreover, the penetration depth of H4 coil resulted quite 

similar across the different human models. FoE showed, on 

the contrary, a minor capability to induce higher E 

amplitude level in depth of the frontal lobe, being d70 

around 1.0 cm and d50 around 1.6 cm..  

 

IV. DISCUSSION 

The recent introduction of dTMS systems for the 

treatment of neurological disorders is not always fully 

supported by a concurrent and detailed estimation of the 

electric field induced in the main structures target of the 

stimulation, thus hampering a full understanding of 

therapeutic outcomes and, in perspective, their diffusion. In 

this work we characterized the electric field distribution 

induced by a novel model of H-coil, designed to stimulate 

bilaterally the prefrontal cortex, in a new highly detailed 

model of human head, in which one can distinguish small 

structures involved in the reward circuit of addiction.  

 For the treatment of addictive disorders, stimulation 

targets include the regions belonging to the mesolimbic 

dopamine circuit, which originates in the ventral tegmental 

area and projects to the reward circuit including nucleus 

accumbens, amygdala, hippocampus, insular, anterior 

cingulate and prefrontal cortex. Results of this study show 

that both FoE and H4 coil systems target preferentially the 

PFC, with an expected net prevalence of the side over 

which it is positioned for the FoE and a bilateral symmetry 

for the H4. That could support the use of those systems for 

the addiction treatment, in view of the frontal lobe 

disruption identified in various forms of substance 

dependence such as nicotine, cocaine, alcohol, heroine and 

also food [26][27]. Moreover H4 seems able to target with 

high E amplitude the anterior cingulate cortex (Fig. 3), 

being the median value higher than the one calculated in the 

whole PFC. Interestingly, that is one of the main target of 

the stimulation, based on neuroimaging studies which 

reported a decreased metabolic activity in the anterior 

cingulate cortex which may underlie some deficits in 

prefrontal cortex seen in individuals with eating disorders 

[28]. On the contrary, FoE focuses high electric field 

amplitude in a small region of the PFC (Fig. 3), 

corresponding to the dorsolateral prefrontal cortex, as 

already observed in a previous computational study [16].  

The cortical electric field due to H4 coil spread also to 

the entorhinal cortex and more in depth to the insula, being 

median levels only 10% lower than the ones induced in the 

PFC (Figs. 3- 4). This region is indeed the main target for 

which this coil has been designed [5] and insula is the main 

cortical area activated by food cues [29].  

At subcortical levels, overeating is thought to be related 

to the hyperactivity of circuits involved in the reward 

sensitivity, conditioning and control [30]. Hypothalamus 

and its projection to the surrounding nuclei in particular has 

been identified as the main controller of food intake and 

play a crucial node for homeostatic, satiety and reward-

related inputs that together govern motor programs that 

activate feeding behavior [31]. Increased neural activation 

of amygdala, hippocampus, nucleus accumbens and VTA, 

besides the over mentioned insula and PFC, have been 

identified in obese patients in response to pictures of high-

calorie foods [32]-[35]. Our results suggest that FoE 

induces on these structures an E amplitude lower than the 

20% of the cortical peak and it agrees with previous 

computational studies, even if the coil pairs was differently 

positioned [12][16]. H4 coil can reach the same limbic 

subcortical structures with an E amplitude substantially 

higher than FoE, up to 35% of the cortical peak. Invasive 

brain stimulation techniques, such as DBS, have showed 

positive results into directly stimulating these structures 

with electric field amplitude lower than the values here 

calculated [37], when referred to a hypothetic cortical 

threshold of about 100 V/m [36]. That means that the 

structures involved in the impairment of the reward system 

in obese patients can be reached with a not negligible E 

amplitude [38], whose effects could be either inhibitory or 

excitatory depending on the neurotransmitter release 

conditioned (GABA or glutamate, respectively) [39]. 

As to laterality, H4 results (Figs. 3-4) do not suggest any 

appreciable differences between left and right side. This is 

an expected result given the symmetry of the manufactured 

coil.  

Our data (Fig. 5) seem to indicate a little influence of the 

human variability on the E amplitude distribution induced 

on different subjects, being the maximum difference in 

normalized mean E levels limited to 7%. These differences 

are probably and uniquely linked to the anatomic changes 

that results into different distances between the analyzed 

regions and the coil, being equal all the other parameters 

(health condition, dielectric properties, coil position, etc…). 

Results of penetration depth in prefrontal cortex (Fig. 6) 

are as such to indicate that H4, similarly to other coils 

belonging to the same dTMS family (see e.g. [12][14][15]), 

can substantially increase the penetration depth of E 

amplitude with distance from the cortical surface and 

penetrate the cortex up to 4-5 cm with an E amplitude 

higher than the 50% of the cortical peak. It represents a 

substantial improvement with respect to the traditional 

TMS system, based on figure-of-8 coils (Fig. 5), as already 

discussed in a previous computational study comparing a 

Hesed-coil system (namely H1) and a traditional figure-of-8 

[16]. In view of the typical decreased grey matter 

concentration in patients with addiction [40], that result can 

be helpful for the TMS based treatment optimization, given 

that grey matter volume loss of the rewarded pathways 

correlate with obesity degree [40]. 

 

V. CONCLUSION 

This study supports the use of H4 for targeting cortical 

and subcortical structures involved in addictive disorders, 

including food craving related disorders. The computational 

approach here used, by specifically quantifying the electric 

field distribution in a detailed anatomy, represents a 

powerful and informative tool for both planning, 
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optimization and outcomes evaluation of clinical protocols 

based on dTMS systems for food addiction treatment. 

Future extensions of this work will comprehend the use 

of a fat head model, in order to evaluate how the variability 

of anatomical characteristics encountered in these patients 

(larger skull size, decreased grey matter concentration, 

etc..) would affect the generality of the results.  
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