Accepted Manuscript

Deep repetitive transcranial magnetic stimulation with H-coil on lower limb motor function after stroke: a pilot study

Raffaella Chieffo, MD Serena De Prezzo, MD Elise Houdayer, PhD Arturo Nuara, MD Giovanni Di Maggio, MD Elisabetta Coppi, MD Laura Ferrari, MD Laura Straffi, MD Francesca Spagnolo, MD Svetla Velikova, MD, PhD Maria Sessa, MD Mauro Comola, MD Abraham Zangen, PhD Giancarlo Comi, MD Letizia Leocani, MD, PhD

PII: S0003-9993(14)00179-8

DOI: 10.1016/j.apmr.2014.02.019

Reference: YAPMR 55758

To appear in: ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION

Received Date: 18 November 2013

Revised Date: 29 January 2014

Accepted Date: 18 February 2014

Please cite this article as: Chieffo R, De Prezzo S, Houdayer E, Nuara A, Di Maggio G, Coppi E, Ferrari L, Straffi L, Spagnolo F, Velikova S, Sessa M, Comola M, Zangen A, Comi G, Leocani L, Deep repetitive transcranial magnetic stimulation with H-coil on lower limb motor function after stroke: a pilot study, *ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION* (2014), doi: 10.1016/j.apmr.2014.02.019.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Running head: Lower limb H-coil rTMS in chronic stroke

Title: Deep repetitive transcranial magnetic stimulation with H-coil on lower limb motor function in chronic stroke: a pilot study

Raffaella Chieffo, MD¹; Serena De Prezzo, MD¹; Elise Houdayer, PhD¹; Arturo Nuara, MD¹; Giovanni Di Maggio, MD¹; Elisabetta Coppi, MD¹; Laura Ferrari, MD¹; Laura Straffi, MD¹; Francesca Spagnolo, MD¹; Svetla Velikova, MD, PhD¹; Maria Sessa, MD¹; Mauro Comola, MD¹; Abraham Zangen, PhD²; Giancarlo Comi, MD¹; Letizia Leocani, MD, PhD¹.

 ¹Scientific Institute Vita-Salute University San Raffaele; Neurological Dep.t; Experimental Neurophysiology Unit, INSPE – Institute of Experimental Neurology; Milan, Italy
 ²Department of Life Sciences Ben-Gurion University, Beer-Sheva, Israel

Corresponding Authors: Letizia Leocani, MD, PhD, and Raffaella Chieffo, MD, Institute of Experimental Neurology, Dep.t of Neurology, Scientific Institute and University Hospital San Raffaele, Milan. Via Olgettina 60, 20132 Milan, Italy. Tel: ++39 02 26433092. Fax: ++39 02 26433085; email: letizia.leocani@hsr.it

Conflicts of interest

A. Zangen is a key inventor of deep TMS H-coils and has financial interst in Brainsway Ltd. The other authors declare no conflicts of interest related to the present study.

Acknowledgments

Supported through the Joint Italian-Israeli laboratory on Brain modulation in neuroimmune, neurodegenerative, and mental disorders (Italian Ministry of Foreign Affairs). Dr R. Chieffo and dr F. Spagnolo participated in this study as partial fulfillment of her PhD in Molecular Medicine, Program in Experimental Neurology, San Raffaele University, Milan, Italy.

1 Deep repetitive transcranial magnetic stimulation with H-coil on lower limb motor

2 function after stroke: a pilot study

3 Abstract

4 **Objectives**: To assess the efficacy of high frequency (20 Hz) brain stimulation on lower limb

5 motor function in subjects with chronic (> 6 months) subcortical stroke in a double-blind,

6 placebo-controlled crossover study.

7 **Design:** double-blind, placebo controlled, crossover study

8 **Setting**: University hospital.

9 **Participants:** ten right-handed subjects affected by a first-ever subcortical stroke in the

10 territory of the middle cerebral artery were included in this study.

11 Interventions: rTMS was delivered with the H-coil, specifically designed to target deeper

12 and larger brains regions. Each subject received both real and sham rTMS in a random

13 sequence. The two rTMS cycles (real or sham) were composed of 11 sessions each,

14 administered over 3 weeks and separated by a 4-week wash-out period.

15 Main Outcome Measures: lower limb functions were assessed by the lower limb Fugl-

16 Meyer (FM) scale, the 10 meters walking test (10MT) and the six minutes walking test

17 (6MWT), before and 1 day after the end of each treatment period, as well as at a 4-week

18 follow-up.

Results: real rTMS treatment was associated with a significant improvement in lower limb.
This effect persisted over time (follow-up) and was significantly greater than that observed
with sham stimulation. A significant increase in walking speed was also found after real
rTMS but this effect did not reach statistical significance in comparison with the sham
stimulation.

24	Conclusions: these data demonstrated that 3 weeks of high-frequency deep rTMS could
25	induce long-term improvements in lower limb functions in the chronic post-stroke period,
26	lasting at least 1 month after the end of the treatment.
27 28	Keywords: stroke, lower limbs, rehabilitation, rTMS, H-coil.
29	
30	List of abbreviations
31	rTMS: repetitive transcranial magnetic stimulation; FM: Fugl-Meyer scale; 10MT: 10
32	meters walk test; 6MWT: 6 minutes walk test.
33	
34	Stroke is a leading cause of long term disability and non invasive brain stimulation
35	techniques have been recognized as a promising intervention for the treatment of post-stroke
36	motor deficits ¹⁻³ . Although the ability to walk is impaired in more than 80% of post-stroke
37	subjects ⁴ , the pathophysiological reorganization of lower limb motor areas after stroke is still
38	unclear as relatively fewer data are available compared with the upper extremity. A study
39	performed with Near-infrared Spectroscopic Imaging System in stroke subjects during
40	walking showed that, similarly to upper limb, the cortical activation patterns of motor,
41	premotor and supplementary lower limb motor cortex was greater for the unaffected
42	hemisphere rather than for the affected hemisphere ⁵ . The latter data suggest that the concept
43	of interhemispheric competition, proposed for homologues upper limb motor areas ⁶ , might
44	be applied even in the case of lower extremity post-stroke recovery. Consistently,
45	improvements of gait parameters of the paretic lower limb have been found associated with a
46	reduction of the interhemispheric asymmetry of the primary sensori-motor cortical activations

⁴⁷ ⁷. Wang and colleagues ⁸ first evaluated in a placebo controlled study, the therapeutic effect ⁴⁸ of task-oriented training associated with 1Hz repetitive transcranial magnetic stimulation ⁴⁹ (rTMS) (with the figure-of-eight coil) performed to inhibit the unaffected lower limb motor ⁵⁰ cortex in chronic stroke subjects. The authors found that inhibitory rTMS enhanced the effect ⁵¹ of task-oriented training on walking performance and motor control ability, leading to a more ⁵² symmetric gait pattern. Recovery of motor deficits was associated with a reduction of the ⁵³ interhemispheric asymmetry of the leg motor excitability.

However, in the chronic phase after stroke, the interhemispheric competition, at least 54 in the upper limb, has been found less pronounced than in the subacute period, and it is 55 commonly observed that the transcallosal asymmetry slows down with time ⁹. Moreover, as 56 bi-hemispheric control of foot movements in healthy subjects have been proposed ¹⁰ one 57 could hypothesize a positive, rather than detrimental role of the unaffected lower extremity 58 59 motor system in recovery mechanisms occurring after stroke. Moreover, in a more recent placebo controlled cross-over study, a single session of high-frequency rTMS, over the leg 60 motor area bilaterally using a double-cone coil, has been reported to significantly improve 61 walking performance for 20 minutes after stimulation in comparison with sham stimulation in 62 a group of chronic post-stroke subjects ¹¹. 63

64 The purpose of our study was to assess the safety and efficacy of bilateral excitatory, high frequency rTMS over the lower limb cortical motor representation in chronic subcortical 65 stroke. To reach the lower limb cortical motor areas, deeply located in the mesial cortical 66 67 surface of the hemispheres, we delivered rTMS was delivered using the H-coil, designed to effectively stimulate at about a depth of 3-5 cm below the skull ^{12, 13}. Compared with the 68 standard figure-of-eight coil, the H-coil has been reported to require lower intensities to 69 obtain lower limb motor responses¹⁴ and larger volumes of the induced electric field ¹⁴, 70 ¹⁵. The H-coil rTMS has been reported effective in the treatment of psychiatric disorders such 71

72	as major depressive disorder or bipolar depression ^{13, 16, 17} . Recently, analgesic effects in
73	subjects with painful diabetic neuropathy were obtained using deep rTMS with H-coil
74	targeting the leg motor cortex ¹⁵ .
75	We hypothesized that high-frequency rTMS delivered with the same H-coil type over
76	the lower limb motor cortical areas could improve the paretic lower limb function in chronic
77	post-stroke subjects.
78	
79	Methods
80	Subjects
81	Ten right-handed subjects affected by a first-ever stroke in the territory of the middle
82	cerebral artery were included in this study. The inclusion criteria for participants were:
83	evidence of acute brain lesion on computerized tomography-CT or magnetic resonance-MR
84	scans at symptoms onset; time between the stroke event and the enrolment in the protocol
85	ranging from 6 months to 3 years (chronic phase); age at admission between 25 and 80 years;
86	ability to walk independently for at least 10 meters, even with assistive devices (cane, ankle-
87	foot orthoses etc.). Exclusion criteria were: history of other neurological disorders, lesions
88	involving the cortical lower limb motor representation, use of drugs acting on central nervous
89	system; presence of contraindications to undergo rTMS such as pregnancy, cochlear
90	implants, neurostimulator, metal in the brain or skull, cardiac pacemaker, history of epilepsy
91	or head trauma diagnosed as a concussion ^{18} .
92	Subjects' age at admission ranged between 49 and 74 years (mean 62.2 years). All
93	subjects suffered from sub-cortical stroke, the affected hemisphere was the right in 6 subjects,
94	while the other 4 subjects had a lesion in the left hemisphere. Subjects' data and lesion
95	localization are reported in Table 1.

- All subjects gave their signed written informed consent to participate in the study that was
 approved by our local ethics committee (DO/MS/ER protocol number: 111/11).
- 98 **Procedures**

We performed a double blind, placebo controlled crossover study. Each subject 99 received both real and sham rTMS treatment cycles separated by a four week washout period 100 in a random sequence (sham-real or real-sham). After full randomization, performed through 101 102 administrative personnel not involved in the protocol, each participant was assigned two blank-coded magnetic cards (A and B), to be used respectively in the first and second cycle. 103 Each card pair contained opposite types of treatments (sham and real). Consecutive subjects 104 were randomized with a global 1:1 ratio, so that 5 participants performed the real-sham and 5 105 the sham-real treatment sequence. Active or sham modes were determined by a switch 106 controlled through the assigned magnetic card. This procedure ensured blindness of subjects, 107 108 examiners and treating personnel. Each treatment cycle lasted 3 weeks for a total of 11 highfrequency rTMS sessions (5 in the first week and 3 in the second and third weeks) (Figure 1). 109 No specific motor task involving the lower limb was associated to the rTMS treatment. 110

111 Deep rTMS

A Magstim Rapid² stimulator (Magstim Company Ltd, Whitland, Dyfed, UK) was 112 coupled with an H-coil (Brainsway Ltd, Jerusalem, Israel) to deliver rTMS. The H-coil, 113 designed for effective activation of hand or leg motor cortex, contained 14 windings. Three 114 medial groups conduce current along a postero-anterior axis, and two other groups return 115 currents in the opposite (anterior-posterior) direction ¹⁵. Resting motor threshold was 116 measured after positioning the H-coil over the vertex on the optimal location for obtaining 117 lower limb motor responses. Resting motor threshold was defined as the minimal intensity 118 evoking visible movements on either lower limb or electromyographic motor evoked 119

120 potentials on tibialis anterior muscle that were monitored bilaterally, with amplitude of $50 \,\mu V$ or higher in 5 out of 10 stimuli, using 1% increments of stimulator output. Then, the H-coil 121 was tightly fixed on the same position with a belt and the sham or real rTMS treatments were 122 delivered (90% of resting motor threshold or up to 84% maximal stimulation output; 30 trains 123 at 20 Hz, 60 sec inter-train interval; total number of pulses 1500). Sham stimulation was 124 performed by activating a sham coil placed in the same stimulation helmet designed to mimic 125 a similar acoustic artifact and some scalp sensation but without inducing an effective field 126 inside the brain. The sham stimulation is, indeed, non tangentially orientated on the scalp, 127 with components cancelling the electric field, which is rapidly reduced as a function of 128 distance¹². Each rTMS session lasted about 30 minutes. 129

130 Safety

Vital signs were recorded before and after each rTMS session. Participants were asked
to report every possible adverse event; especially the most frequently reported side effects
such as headache, or dizziness. We also performed continuous visual monitoring of
participants throughout all treatment sessions, excluding the occurrence of involuntary
movements suggesting stimulation above motor threshold or seizures.

136

Clinical evaluation

137 Clinical evaluation was performed before and one day after the end of the treatment
138 period, as well as at a four-week follow-up (which served as baseline for the second treatment
139 cycle) (Figure 1). The residual neurological deficit (National Institutes of Health Stroke
140 Scale-NIHSS) and the degree of disability (Barthel Index and modified Rankin Scale) were
141 quantified at enrollment.

142	The primary outcome was the Fugl-Meyer (FM) assessed for the affected lower limb. The
143	motor score ranges from 0 (hemiplegia) to a maximum of 34 points (normal motor
144	performance). It includes items measuring synergic and simple movements, coordination, and
145	reflex at the hip, knee, and ankle levels ¹⁹ . As exploratory measures (secondary outcome) we
146	used:
147	- 10 meter walk test (10MT): the subject was asked to walk as quickly as possible, back
148	and forth, along a 10-meter path marked by a starting and arriving line on the floor.
149	Assistive devices were allowed except the walker. The task was administered twice in
150	a row. The best time of the two trials was considered for our data analysis.
151	- 6 minute walk test (6MWT) (secondary outcome): this test measured the distance
152	walked in a period of 6 minutes 20 .
153	
154	Statistical analysis
155	Given the exploratory nature of this pilot trial, no sample size determination was
156	performed. Statistical analysis was performed using the SPSS software (version 13.0, SPSS
157	Inc., USA). After verifying the normal distribution with the Kolmogorov-Smirnov Test,
158	parametric tests were used. When appropriate, the Geisser-Greenhouse procedure was applied
159	to correct degrees of freedom. The significance level was set at $p \le 0.05$ for all analyses.
160	Changes over time in clinical outcomes after real or sham (9 subjects) treatment were
161	first evaluated. Absolute clinical measures (lower limb FM, 10MT and 6MWT) underwent
162	two separate one-way ANOVA for repeated measures for the real and the sham group
163	respectively, with Time as within subject factor (baseline, end of treatment and follow-up).

164	To directly compare the effects of real and sham treatment on clinical outcomes we
165	calculated the percent change to the relative baseline of clinical scores obtained immediately
166	after sham or real treatment (end of treatment) and after 1-month follow-up as follows:
167	% end of treatment = [(end of treatment – baseline) / baseline] x 100;
168	% follow-up = [(follow-up – baseline) / baseline] x 100
169	Then, a two-way ANOVA for repeated measures was performed using "treatment"
170	(real and sham) and "time" (end of treatment and follow-up) as within subject factors. If a
171	significant main effect was found, post-hoc comparisons were performed using paired
172	Student's T-tests. Differences in the two baseline measurements (before real and sham
173	treatment) were evaluated with paired T-tests.
174	Results
175	Of the 10 participants, results will be presented for 9 since one left the study because
176	of a cardiac disease and was therefore not included in the statistical analysis (patient 6-Table
177	1). Lower limb motor responses, at rest or with facilitation through voluntary contraction,
178	were obtained in all subjects.
179	Safety
180	No subject reported any adverse effects related to rTMS, including seizures. No
181	significant changes in blood pressure levels were observed throughout the protocol periods.
182	Finally, the applied stimulation parameters were well tolerated by all subjects.
183	Clinical outcomes
184	The two treatment baselines (T_1 vs T_3 ; n=9, paired T-test) of the clinical measures were
185	not significantly different (lower limb FM p=0.1; 10MT p=0.5; 6MWT p=0.4).
186	No absolute significant changes over time in any clinical measure were found after
187	sham treatment (repeated measures ANOVA: lower limb FM: F=0.8, p=0.4; 10MT F=0.7,
188	p=0.4; 6MWT F=0.7, p=0.4). A significant effect of "time" factor on lower limb FM and

189	10MT (F= 17.1, p<0.001 and F=3,7, p=0.05 respectively) but not on 6MWT (F=0.2, p=0.1)
190	was found in the real group. The post-hoc analysis revealed a significant improvement of
191	lower limb FM score between baseline and both end of treatment evaluations (baseline vs end
192	of treatment: p=0.009; baseline vs follow-up p=0.001) as well as a persisting improvement in
193	the follow-up period (end of treatment vs follow-up p=0.05). The improvement at follow-up
194	vs baseline suggests a carry-over effect up to the second baseline measurements for the real
195	treatment (Figure 2). We also found a significant amelioration in 10MT performance at the
196	end of the real treatment in comparison with baseline (baseline vs end of treatment p=0.04).
197	The persistent improvement after 1 month follow-up did not reach significance (baseline vs
198	follow-up p=0.07) (Table 2).
199	Comparing the effects of real and sham stimulation, the ANOVA analysis showed a
200	significant effect of "treatment" factor (F=12, p=0.008) as well as a significant interaction
201	between "time" and "treatment" factors (F=11.3, p=0.01) only on lower limb FM score
202	(6MWT and 10MT: n.s.). The percentage improvement of lower limb FM resulted
203	significantly greater for real vs sham stimulation at the end of treatment and even more at 1-
204	month follow-up (p=0.01 and p=0.006 respectively). Moreover, clinical gains with real
205	stimulation significantly progressed between end of treatment and follow-up evaluations (end
206	of treatment vs follow-up: p=0.04) (Figure 3).
207	
208	Discussion
200	The days representation of laws limb muscles in the human havin makes it difficult to

The deep representation of lower limb muscles in the human brain makes it difficult to approach with standard non-invasive stimulation techniques. So far, few studies have been published about potential therapeutic rTMS application on post-stroke walking deficits. A recent open study showed that a protocol consisting in 20 sessions of high-frequency rTMS delivered with double cone coil associated with mobility training is safe and can improve

walking function after stroke ²¹. To our knowledge, this is the first placebo controlled study 214 evaluating the safety and the therapeutic effect of deep non invasive brain stimulation 215 delivered with H-coil over the lower limb motor cortex bilaterally in post-stroke gait 216 disturbance. For this pilot study we enrolled participants with stroke in the territory of the 217 middle cerebral artery and excluded those with stroke in the territory of the anterior cerebral 218 artery, in order to avoid cortical lesions of the target lower limb representation, mainly for 219 safety reasons (i.e. to avoid epileptic activation). Moreover, subjects with lesions involving 220 the motor cortex have been reported as less likely to benefit from rTMS treatment²². Our 221 results suggest an effective role of deep high-frequency rTMS in ameliorating lower limb 222 motor function, especially regarding the Fugl-Meyer lower limb scores. Evaluating the 223 duration of such effect over time, participants not only maintained the benefits of the H-coil 224 treatment at one month follow-up, but they continued to ameliorate after the end of the 225 226 treatment, showing better scores at the follow-up compared to the post-rTMS evaluation. This could be explained by the long-lasting modulatory effects of non-invasive brain stimulation 227 techniques ^{23, 24}, probably potentiated by the daily use of the paretic lower limb. Consistently 228 with this finding, the differences between real and placebo effects were mainly seen at the 4-229 week follow up. Although our data might be limited by a relatively short wash-out period, the 230 231 crossover design of our study helped to point out the presence of a considerable long lasting effect of deep rTMS (Figure 2). Sham stimulation showed a weak effect on Fugl-Meyer 232 lower limb score scale immediately after the end of treatment that faded away with time. 233 Participants improved by 10.6 % on average after real rTMSvs 0.6 % after sham stimulation. 234 An amelioration of about 30% of FM lower limb score in the experimental group has been 235 obtained following 1 Hz rTMS over the unaffected lower limb motor area [23]. However, it is 236 237 important to note that in the latter study rTMS was combined with task-oriented training, which is, by itself, beneficial for motor recovery ²⁵. Indeed, an improvement of about 20% in 238

239	lower limb FM scale was found in the control group undergoing motor training associated
240	with sham rTMS. In our study, walking speed evaluated by the 10MT test significantly
241	increased only after real and not sham rTMS, but this effect did not reach statistical
242	significance in comparison with sham stimulation. Improvement after sham treatment on
243	10MT measurement was indeed greater than on FM lower limb scales, suggesting that pure
244	motor ability of the paretic limb, compared with walking speed, is less likely to improve after
245	sham stimulation. On the other hand, walking speed does not necessarily take into account
246	the quality of movement itself. Indeed, the 10MT test cannot allow to discriminate between
247	movement speed of the paretic and unaffected limbs. Moreover, all subjects included were all
248	autonomous in walking and therefore they might have had a limited margin for improvement.
249	The application of inhibitory rTMS over the contra-lesional motor cortex is based on
250	the model of interhemispheric competition after stroke established for the upper limb
251	extremity ⁶ . In fact, early hyperexcitability and increased interhemispheric inhibition of the
252	contralesional motor cortex have been demonstrated to the upper limb using TMS after
253	unilateral stroke ^{26, 27} . However, in the post-stroke chronic phase the interhemispheric
254	competition is less pronounced than in the sub-acute period, as it is commonly observed that
255	the transcallosal asymmetry decreases with time ⁹ . Moreover, contralesional premotor and
256	motor cortex interference by TMS after chronic unilateral stroke worsens motor performance
257	during complex movement of the paretic hand. This finding has been interpreted as
258	suggesting a beneficial role of contra-lesional motor areas in effectively recovered complex
259	motor behavior after subcortical stroke ²⁸ . However, the mutual inhibition between
260	homologous motor areas can be modulated under physiological conditions. For example,
261	during movement preparation of the non-dominant hand the dominant hemisphere is
262	facilitated ^{29, 30} . Moreover, studies on normal subjects suggest a bi-hemispheric control of
263	foot movements in healthy subjects. In particular, a more lateralized pattern of activation at

functional MRI has been found to finger movements versus lower limb joints, with increased 264 lateralization from proximal to distal lower joints ³¹ implicating a different functional 265 specialization. Moreover, after training of the right lower limb an increased strength of the 266 homologous, with increased excitability of the corresponding motor cortex, has been reported 267 [30]. The latter findings implicate changes in functional interhemispheric connections 268 between the two motor cortices ³². These findings could have important clinical implications 269 for subjects with reduced limb mobility after a stroke. Accordingly, our data suggest that 270 bilateral high frequency rTMS over the lower limb motor cortical representation may have a 271 beneficial role in motor recovery of the paretic limb. Further studies are needed to better 272 understand the mechanisms underlying this effect, in particular the role of plastic changes 273 over the motor cortex controlling the two lower limbs. 274

275

276 Study limitations

The small sample size is the major limitation of this study. Another limitation is the crossover design of the study with a relatively short washout period with a carry-over effect up to the second baseline measurements for the real treatment. Some feelings (e.g. scalp sensations) may have differed in the placebo and real conditions. Therefore, the future use of a questionnaire for study participants and evaluating physicians would be recommended to help verifying that blinding is maintained throughout the conduction of the study.

283 Conclusions

284 Despite the limits of our studyour main results suggests a potential beneficial role of 285 high-frequency rTMS delivered with the H-coil in improving lower limb motor function. 286 These findings represent the first evidence about a relevant but greatly unexplored field of 287 therapeutic application of non invasiveneuromodulation.

288		
289	Suppli	iers
290	a. Mag	stim Rapid ² stimulator (Magstim Company Ltd, Whitland, Dyfed, UK)
291	b. H-c	coil (Brainsway Ltd, Jerusalem, Israel)
292		
293	Refere	ences
294	1.	Hummel FC, Cohen LG. Non-invasive brain stimulation: a new strategy to improve
295	neuror	ehabilitation after stroke? Lancet Neurol 2006;5(8):708-12.
296	2.	Alonso-Alonso M, Fregni F, Pascual-Leone A. Brain stimulation in poststroke
297	rehabil	litation. Cerebrovasc Dis 2007;24 Suppl 1:157-66.
298	3.	Bolognini N, Pascual-Leone A, Fregni F. Using non-invasive brain stimulation to
299	augme	nt motor training-induced plasticity. J Neuroeng Rehabil 2009;6:8.
300	4.	Duncan PW, Goldstein LB, Horner RD, Landsman PB, Samsa GP, Matchar DB.
301	Simila	r motor recovery of upper and lower extremities after stroke. Stroke 1994;25(6):1181-
302	8.	
303	5.	Miyai I, Yagura H, Oda I, Konishi I, Eda H, Suzuki T et al. Premotor cortex is
304	involv	ed in restoration of gait in stroke. Annals of neurology 2002;52(2):188-94.
305	6.	Nowak DA, Grefkes C, Ameli M, Fink GR. Interhemispheric competition after stroke:
306	brain s	timulation to enhance recovery of function of the affected hand. Neurorehabil Neural
307	Repair	2009;23(7):641-56.
308	7.	Miyai I, Yagura H, Hatakenaka M, Oda I, Konishi I, Kubota K. Longitudinal optical
309	imagin	ng study for locomotor recovery after stroke. Stroke 2003;34(12):2866-70.
310	8.	Wang RY, Tseng HY, Liao KK, Wang CJ, Lai KL, Yang YR. rTMS combined with
311	task-oi	riented training to improve symmetry of interhemispheric corticomotor excitability and

312 gait performance after stroke: a randomized trial. Neurorehabil Neural Repair

313 2012;26(3):222-30.

314 9. Swayne OB, Rothwell JC, Ward NS, Greenwood RJ. Stages of motor output

reorganization after hemispheric stroke suggested by longitudinal studies of cortical

316 physiology. Cereb Cortex 2008;18(8):1909-22.

317 10. Aglioti S, Dall'Agnola R, Girelli M, Marzi CA. Bilateral hemispheric control of foot
318 distal movements: evidence from normal subjects. Cortex 1991;27(4):571-81.

319 11. Kakuda W, Abo M, Nakayama Y, Kiyama A, Yoshida H. High-frequency rTMS

320 using a double cone coil for gait disturbance. Acta neurologica Scandinavica

321 2013;128(2):100-6.

Roth Y, Zangen A, Hallett M. A coil design for transcranial magnetic stimulation of
deep brain regions. J Clin Neurophysiol 2002;19(4):361-70.

32413.Zangen A, Roth Y, Voller B, Hallett M. Transcranial magnetic stimulation of deep

- brain regions: evidence for efficacy of the H-coil. Clinical neurophysiology 2005;116(4):775-
- **326** 9.

Roth Y, Pell GS, Chistyakov AV, Sinai A, Zangen A, Zaaroor M. Motor cortex
activation by H-coil and figure-8 coil at different depths. Combined motor threshold and

electric field distribution study. Clinical neurophysiology 2014;125(2):336-43.

330 15. Onesti E, Gabriele M, Cambieri C, Ceccanti M, Raccah R, Di Stefano G et al. H-coil

331 repetitive transcranial magnetic stimulation for pain relief in patients with diabetic

neuropathy. Eur J Pain 2013.

Harel EV, Rabany L, Deutsch L, Bloch Y, Zangen A, Levkovitz Y. H-coil repetitive
transcranial magnetic stimulation for treatment resistant major depressive disorder: An 18-

week continuation safety and feasibility study. World J Biol Psychiatry 2012.

- 17. Harel EV, Zangen A, Roth Y, Reti I, Braw Y, Levkovitz Y. H-coil repetitive
- transcranial magnetic stimulation for the treatment of bipolar depression: an add-on, safety
- and feasibility study. World J Biol Psychiatry 2011;12(2):119-26.
- 18. Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety, ethical considerations, and
- 340 application guidelines for the use of transcranial magnetic stimulation in clinical practice and
- research. Clinical neurophysiology 2009;120(12):2008-39.
- 19. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke
- hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med
 1975;7(1):13-31.
- ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med
 2002;166(1):111-7.
- 21. Kakuda W, Abo M, Watanabe S, Momosaki R, Hashimoto G, Nakayama Y et al.
- 348 High-frequency rTMS applied over bilateral leg motor areas combined with mobility training
- for gait disturbance after stroke: A preliminary study. Brain Inj 2013;27(9):1080-6.
- 22. Ameli M, Grefkes C, Kemper F, Riegg FP, Rehme AK, Karbe H et al. Differential
- 351 effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional
- 352 primary motor cortex in cortical and subcortical middle cerebral artery stroke. Annals of
- assa neurology 2009;66(3):298-309.
- 23. Pascual-Leone A, Valls-Sole J, Wassermann EM, Hallett M. Responses to rapid-rate
 transcranial magnetic stimulation of the human motor cortex. Brain 1994;117 (Pt 4):847-58.
- 24. Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M et al. Depression
 of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology
 1997;48(5):1398-403.

- 359 25. Yang YR, Wang RY, Lin KH, Chu MY, Chan RC. Task-oriented progressive
- 360 resistance strength training improves muscle strength and functional performance in
- individuals with stroke. Clin Rehabil 2006;20(10):860-70.
- 26. Chieffo R, Inuggi A, Straffi L, Coppi E, Gonzalez-Rosa J, Spagnolo F et al. Mapping
- 363 early changes of cortical motor output after subcortical stroke: A transcranial magnetic
- stimulation study. Brain Stimul 2012.
- 365 27. Netz J, Lammers T, Homberg V. Reorganization of motor output in the non-affected
 366 hemisphere after stroke. Brain 1997;120 (Pt 9):1579-86.
- 28. Lotze M, Markert J, Sauseng P, Hoppe J, Plewnia C, Gerloff C. The role of multiple
- 368 contralesional motor areas for complex hand movements after internal capsular lesion. J
- 369 Neurosci 2006;26(22):6096-102.
- 29. Leocani L, Cohen LG, Wassermann EM, Ikoma K, Hallett M. Human corticospinal
- 371 excitability evaluated with transcranial magnetic stimulation during different reaction time
- 372 paradigms. Brain 2000;123 (Pt 6):1161-73.
- 373 30. Giovannelli F, Borgheresi A, Balestrieri F, Zaccara G, Viggiano MP, Cincotta M et al.
- 374 Modulation of interhemispheric inhibition by volitional motor activity: an ipsilateral silent
- 375 period study. J Physiol 2009;587(Pt 22):5393-410.
- 376 31. Kapreli E, Athanasopoulos S, Papathanasiou M, Van Hecke P, Strimpakos N,
- 377 Gouliamos A et al. Lateralization of brain activity during lower limb joints movement. An
- 378 fMRI study. Neuroimage 2006;32(4):1709-21.
- 379 32. Goodwill AM, Pearce AJ, Kidgell DJ. Corticomotor plasticity following unilateral
- strength training. Muscle Nerve 2012;46(3):384-93.
- 381
- 382
- 383

384 Legends

- **Figure 1**: Study design: double-blind placebo-controlled crossover study
- For both real and sham treatment, 11 rTMS sessions (grey vertical bars) were performed
- within a 3-week period (5 in the first week and 3 in the second and third weeks), separated by
- a 4-week wash-out. W: week; T: time of clinical evaluations.
- **Figure 2:** lower limb FM (Fugl-Meyer) scores grouped according to treatment sequence.
- Black circles: real-sham sequence (4 subjects) and grey squares: sham-real sequence (5
- subjects). Continuous lines: rTMS period; dashed lines: wash-out period. In both groups,
- 392 after real stimulation performance grows even after the end of treatment, while placebo effect
- fades away.
- **Figure 3:** (A) lower limb FM (Fugl-Meyer) score: real vs sham comparison (9 vs 9 patients)
- revealed a significant improvement at the end of treatment (p=0.01) as well as at follow-up (p
- =0.006). Amelioration was greater after 4 weeks from the end of real treatment as confirmed
- 397 by a significant difference in baseline percent change at the end of treatment vs follow-up (p=
- 398 0.04).

Patient	age	lesion	onset (months)	NIHSS	BI	mRS	Sequence
1	50	right capsulo-lenticular ischemia	20	3	90	2	real-sham
2	74	right internal capsular ischemia	21	2	100	1	real-sham
3	65	left capsulo-lenticular hemorrhagia	8	5	100	2	sham-real
4	49	right capsulo-lenticular hemorrhagia	21	5	100	2	real-sham
5	65	right capsular hemorrhagia	10	4	85	2	sham-real
6*	71	right capsular hemorrhagia	30	3	60	3	real-sham
7	74	left capsular ischemia	24	4	95	2	sham-real
8	69	left capsulo-lenticular hemorrhagia	30	6	85	2	real-sham
9	50	left capsulo-lenticular ischemia	21	3	100	1	sham-real
10	55	right capsular ischemia	25	2	100	1	sham-real

Table 1 Demographic data, clinical features and treatment sequence of each patient are reported.

* = drop out; M= male; F= female; NIHSS= National Institutes of Health Stroke Scale; BI= Barthel

Index; mRS= modified Rankin Scale

Table 2 Performance scores grouped according to treatment type (n=9).

FM-LL							10 MT					6 MWT			
	baseline	post	FU	Post vs baseline	FU vs baseline	baseline	post	FU	Post vs baseline	FU vs baseline	baseline	post	FU	Post vs baseline	FU vs baselin
Real rTMS	24,7±1,4	26,8±1,5	27,7±1,5	p=0.009	p=0.001	9,4±1,1	8,5±0,9	8,7±0,9	p=0.04	p=0.07	320,6±29,7	338,9±24,9	345,1±30,9	ns	ns
Sham rTMS	26,2±1,4	26,7±1,4	25,9±1,1	ns	ns	9,2±1,0	9,0±1,1	8,8±0,9	ns	ns	307,4±34,9	325,7±25,2	309,4±27,5	ns	ns

Values are expressed as mean \pm squared error.

FU= follow up, ns= not significant.

Figure 1

and the second s

Figure 3

